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ABSTRACT

In 1928, the Artin-Hasse Exponential was created as an analogy to the exponential
function that comes from infinite products, as discussed in the paper. This paper
gives an introductory discussion of a formal power series and it’s connection to
the p-adics, a number system. Introductory results utilizing the Cauchy sequences
are proven and the fact that Qp is the completion of Q is also proven which lays
the grounds for a discussion of the radius of convergence in the p-adics. The
paper also elucidates the mutual inverse isomorphism between the exponential and
logarithmic functions in the p-adics which is used to prove various properties about
the Artin-Hasse Exponential. Intermediatary results regarding Surface Topology
are also proved using metric spaces. A new proof for Dwork’s Lemma is provided
via methods of induction and is applied to prove the Integrality of the Artin-Hasse
Function, E(x), which proves that the coefficients are integers which is essential
for further research in this field. Extensions regarding E(x) are discussed, such
as the radius of convergence of E(x), generalized images of the p-adics, and the
applications of E(x).
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1 Formal Power Series
Definition 1: Let R be a ring and R[[x]] = {a0 + a1x+ a2x

2 + . . . |ai ∈ R}. It is easy to show that
R[[x]] is a ring and that 1 ∈ R[[x]] is the multiplicative identity.

Lemma 1: f = a0 + a1x+ a2x
2 + . . . ∈ R[[x]] is a unit ⇐⇒ a0 ∈ R is a unit.

Proof. For the forward direction, we have that fg = 1 for some g = b0 + b1x+ b2x
2 + . . . ∈ R[[x]].

This means that the constant terms of the left and right hand sides must be equal, so
a0b0 = 1 =⇒ a0 is a unit.

For the reverse direction, we want to construct g = b0 + b1x + b2x
2 + . . . such that fg = 1 We

know that we can find a b0 such that a0b0 = 1 because a0 is a unit. Then, ∀n ≥ 1, we want:
n∑

k=0

akbn−k = 0

We can do this inductively:

a0bn +
n∑

k=1

akbn−k = 0

=⇒ a0bn = −
n∑

k=1

akbn−k

=⇒ bn = −b0

n∑
k=1

akbn−k

Thus we have constructed every coefficient of b to make ab = 1 ∀a where a0 is a unit.

2 The p-adic Numbers
Definition 2: Let p be a prime number. Define Zp = {(a1, a2, a3, . . .)|ai ∈ Z/pZ} to be the
set of p-adic integers. Equivalently, one can write an element a ∈ Zp as the power series
a = a0 + a1p+ a2p

2 + . . . with ai ∈ {0, 1, . . . , p− 1}.

Proposition 2.1: The p-adic numbers form a ring under termwise addition and multiplication.
Additionally, if ab = 0 in Zp, then either a = 0 or b = 0.

Proof. Consider the three p-adic numbers (a1, a2, a3, . . .), (b1, b2, b3, . . .), and (c1, c2, c3, . . .).
Since we are adding these numbers term by term we only need to consider each individual column,
or each ai, bi and ci at a time for each i. Addition and multiplication on these terms act the same
way as they do in the integers: ai + bi = bi + ai (commutativity), (ai + bi) + ci = ai + (bi + ci)
and (ai · bi) · ci = ai · (bi · ci) (associativity).
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Thus each corresponding term in the sum or product of two or three p-adic numbers will remain the
same regardless of the presence of parentheses or order of the terms being summed or multiplied.
Distributivity applies in a similar manner: ai · (bi + ci) = ai · bi + ai · ci

The additive identity in the integers is 0, so in the same way the additive identity in the p-adics
is the number (0, 0, 0, . . .), an infinite string of zeros. Adding this to some other p-adic number
(a1, a2, a3, . . .) term by term gives (a1 + 0, a2 + 0, a3 + 0, . . .) = (0 + a1, 0 + a2, 0 + a3, . . .) =
(a1, a2, a3, . . .).

For every p-adic integer (a1, a2, a3, . . .), its additive inverse is the p-adic integer
(p − a1, p − a2, p − a3, . . .). Again, adding these two values term by term gives
(a1 + p − a1, a2 + p − a2, a3 + p − a3, . . .) = (p − a1 + a1, p − a2 + a2, p − a3 + a3, . . .) =
(p, p, p, . . .) = (0, 0, 0 . . .), which is the additive identity as shown above.

The multiplicative identity in the p-adics is also represented by the value 1 = (1, 0, 0, . . .).
(a1, a2, a3, . . .) · (1, 0, 0, . . .) = (a1 · 1, a2 · 1, a3 · 1, . . .) = (a1, a2, a3, . . .).

Thus the p-adics satisfy commutativity, associativity, and distributivity. There exists both an additive
and multiplicative identity, and every element has an additive inverse, so Zp is a ring.

Theorem 1: ab = 0 in Zp =⇒ a = 0 or b = 0

Proof. Assume that a = (a1, a2, a3, . . .) ̸= 0 and b = (b1, b2, b3, . . .). Then, ∃k ∈ N s.t. ak ̸= 0.

Let us consider each bi separately. bi · a = 0 =⇒ bi · ak = 0. Since we know that Z/pZ contains
no zero divisors, bi must be 0 =⇒ bi = 0 ∀i ∈ N =⇒ b = (0, 0, 0 . . .), an infinite string of zeros,
which we showed is equal to the integer zero.

Theorem 2: Let f(x) ∈ Zp[x] and a1 ∈ Zp. Assume that f(a1) ≡ 0 (mod p) and f ′(a1) ̸≡ 0 (mod
p). Then there is a unique a ∈ Zp such that f(a) = 0 and a ≡ a1 (mod p).

Before we begin this proof let us consider an example in Z. Consider the equation
x2 ≡ 2 (mod 7n). It can be easily verified that the solutions taken mod 7 are x ≡ ±3. Then,
x = 7k ± 3 for some integer k. Now let us consider the equation mod 49. Then, x2 = (7k + 3)2 =
49k2 ± 42k + 9 ≡ ±7k + 9 ≡ 2 (mod 49) =⇒ ±7k ≡ −7 (mod 49) =⇒ k ≡ ±1 (mod 7)
=⇒ n ≡ 7(7k ± 1)± 3 ≡ ±10 (mod 49).

Proof. Using this example, let us assume a1 exists and show that a unique a exists. We know
that f(a1) ≡ 0 (mod p) and a1 ≡ a (mod p). Let a = bp + a1 for some b ∈ Z. Let us create a
function f . Then, f(a) = f(bp+a1). We already know that a1 exists, so we want to show that a does.

Taking the Taylor Series of f centered at a1 gives:

f(x) = f(a1) + f ′(a1)(x− a1) +
f ′′(a1)(x− a1)

2

2
+ . . .+

f (n)(a1)(x− a1)
n

n!
+ . . .

3
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Then,

f(a) = f(bp+ a1) = f(a1)+ f ′(a1)(bp)+
f ′′(a1)(bp)

2

2
+ . . .+

f (n)(a1)(bp)
n

n!
+ . . . ≡ 0 (mod p)

.

Thus we know f(a) ≡ 0 (mod p) =⇒ f(a) = pk for some k ∈ Z. Like our above example, now
let us consider mod p2:

f(a) ≡ f(a1) + f ′(a1)(bp) ≡ f(a) + f ′(a1)(bp) ≡ pk + f ′(a1)(bp) ≡ 0 (mod p2)

Dividing everything through by p gives

k + f ′(a1)b ≡ 0 (mod p)

Since f ′(a1) ̸≡ 0 (mod p), we know that it has an inverse. Thus we can take

b = (−k)(f ′(a1))
−1 (modp)

Since k is unique and f ′(a1) is unique, b must be unique. Thus we have shown that we can construct
a unique a that satisfies f(a) = 0 and a ≡ a1 (mod p).

Exercise 1: Make sense of
√
p as a p-adic number, regarding it’s size.

Let’s try p = 3, and then let’s try
√
3 as a 7-adic number. We want to solve x2 ≡ 3 mod 7k with

Hensel’s Lemma. Using Hensel’s Lemma, we find that the solutions are

x2 ≡ 3 mod 7

x2 ≡ 3 + 7 mod 72

x2 ≡ 3 + 7 + 2 · 72 mod 73

x2 ≡ 3 + 7 + 2 · 72 + 6 · 73 mod 74

...

We notice that
√
3 has no pattern, but there is a simple way to fix this. Let’s use the Binomial

Theorem, where we can calculate (7a+ 1)
1
2 . Then, if we let a = −1

9
we get

√
2√
9
. If we multiply the

final power series by 3, then we get the expansion of
√
2.

First notice that not every
√
p can be written as a p-adic number. Every rational number

that is a quadratic residue mod p1 can be a square root in Qp. In the example above, we see
(2
7
) = 1, so 2 is a square in the p-adics. A 2-adic unit α is a square in Z2 if and only if α ≡ 1 mod 8.

Let’s consider a general p-adic number, a = pk(a0 + a1p+ a2p
2...). If a = b2, then |a|p = (|b|p)2

so that |b|p =
√

|a|p = p−
k
2 . If k is even there is no problem, but if k is odd then b /∈ Qp.

4
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We see that the p-adic size of
√
p is 0, unless the b0 term in the p-adic expansion (b0+b1p+b2p

2+ ...)
is 0. The p-adic size of p

a
b if a > b would be just 1

p⌊
a
b
⌋ . Although, if a < b then we have to look at

the congruence pa ≡ c mod p.

Definition 3: Qp = Zp[
1
p
] where Qp is the field of p-adic rationals. Moreover, we have two p-adic

numbers, a
pk

and b
pm

equal only if apm = bpk.

For example, note that we have (1,4,13..)
1

+ (3,3,3..)
3

+ (2,5,14...)
9

∈ Z3.

But, the above is not equal to (1, 4, 13...) + (1, 1, 1...) + (2
9
, 5
9
, 14

9
...). The division above is

merely used as notation and does not directly translate to above. More generally, any element
of Qp is a0+ a1

p
+ a2

p2
+ a3

p3
+... and taking pk as the common denominator we get a0+a1p+a2p2+...

pk
= a

pk
.

Definition 4: We define the p-adic valuation, vp(a) of an integer a ∈ Z to be the greatest n ∈ Z
such that pn|a. We extend this definition to Q such that if q = a

b
∈ Q, vp(q) = vp(a) − vp(b).

Moreover, we define vp(0) = ∞

Definition 5: We define the p-adic absolute value (or norm) to be the function | . |p: Q → R, such
that for q ∈ Q, |q|p = p−vp(q)

Lemma 2: Q is contained in Qp

Proof. Before tackling Qp, let’s start by considering the localization of Z at p the set:

Z(p) := {(a
b
) ∈ Q | (a, b) = 1, pb}

We claim that Z(p) is contained within Zp. We note that ∀a
b
∈ Z(p), a

b
∈ Zp, as ∀k ∈ N there exists

an inverse element of b, b−1
k ∈ Z/pkZ such that bb−1

k = 1 in Z/pkZ, and thus there exists an element
ab−1

k ∈ Z/pkZ such that bab−1
k = a in Z/pkZ. Considering the sequence ab−1

k for k = 1, 2, . . . in
Zp, we see that it is equivalent to some x ∈ Zp such that bx = a, i.e. x = a

b

So Z(p) is contained within Zp. We wish to use this fact to show that Q is contained within Qp. For
all c

d
∈ Q, let c

d
= pk(a

b
), for k ∈ Z, and a

b
∈ Z(p).

As a
b
∈ Z(p), we have shown that a

b
∈ Zp, and can write it’s p-adic expansion as a0+a1p+a2p

2+ . . .,
where each ai ∈ {0, 1, . . . , p− 1}.

Then c
d
= a0p

k + a1p
k+1 + a2p

k+2 + . . .. As this expansion is an element of Qp, it follows that
c
d
∈ Qp, and thus Q is contained within Qp.

5
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Proposition 2.1: Qp, is a field given the fact that Q is contained in Qp.

Proof. It can be easily checked by using the fact that Qp is the completion (Proposition 2.6) of the
rationals with respect to the p-adic norm.

Exercise 2: What do p-adically small numbers look like? What do p-adically large numbers look
like?

An example of a p-adically large number would be of the form 000...0001, for the absolute value of
a p-adic number, is the reciprocal of the largest power of p that divides it.

An example of a p-adically small number would be of the form 1000...000, as the larger the
denominator, the smaller the fraction is (closer to 0).

Proposition 2.2.1: The following properties of vp(n) for any a, b ∈ Z hold true.

1. vp(ab) = vp(a) + vp(b)
2. vp(a+ b) ≤ min(vp(a), vp(b))

3. If vp(a) ̸= vp(b) then vp(a+ b) = min(vp(a), vp(b).

Proof. Let vp(a) = k1 and vp(b) = k2. WLOG, assume that k1 ≥ k2.

1. We have ab = a′b′pk1+k2 where (a′b′, p) = 1 since each of the a′ and b′ are co-prime to p. Hence
vp(ab) = k1 + k2 = vp(a) + vp(b).

2. We have a+ b = a′(pk1) + b′(pk2) since k1 ≥ k2. We can write that...

a+ b = pk2(a′pk1−k2 + b′)

. Hence, vp(a + b) = k2 + vp(a
′pk1−k2). Clearly, the above is at least k2. Hence

vp(a+ b) ≥ k2 = min(vp(a), vp(b)) since we assumed that vp(a) ≤ vp(b).

3. Since we have vp(a) ̸= vp(b) then we know that k1 > k2. Thus a′(p1k1−k2) + b′ ≡ 0 + b′ ≡ b′

(mod p). Hence p ∤ a′(p1k1−k2 + b′ so we can write vp(a + b) = k2 = vp(b) = min(vp(a), vp(b)
since we assumed that vp(a) ≤ vp(b).

Proposition 2.2.2: The following properties regarding |·|p are true.

1. |a|p ≥ 0

2. |a+ b|p ≤ max(|a|, |b|)
3. |ab|p = |a|p|b|p

Proof. 1. We have |a|p = p−vp(a). We have p−vp(a) = 0 only when vp(a) = ∞ which only happens
when a = 0.

6
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2. We have |a + b|p = p−vp(a+b) ≤ p−min(vp(a),vp(b) = pmax(−vp(a),−vp(b)) since
vp(a+ b) ≥ min(vp(a), vp(b). Thus, |a+ b|p ≤ max(|a|).

3. We have...
|ab|p = p−vp(ab) = p−vp(a)−vp(b) = p−vp(a)pvp(b) = |a|p|b|p

Proposition 2.3: Show that Q is a metric space over dp where dp is defined as Q × Q → R :
d(x, y) = |x− y|p.

Proof. In order to prove this, we must prove it for all the properties of a metric space.

1. dp(x, y) = |x− x|p = |0|p = 0.

2. dp(x, y) = |x− y|p > 0 from above.

3. dp(x, z) = |x − z|p = |(x − y) + (y − z)|p. By property 2 in Proposition 2.2.2 above,
|(x−y)+(y−z)|p ≤ max(|x−y|p, |y−z|p) ≤ |x−y|p+|y−z|p. Hence d(x, z) ≤ d(x, y)+d(y, z).

4. dp(x, y) = |x− y|p = |y − x|p.

Thus, Q is a metric space over dp.

Remark 1: In fact we can prove a stronger statement about the metric space dp over
Q, namely that it is “ultrametric”, i.e. it satisfies the Strong Triangle Inequality that
dp(x, z) ≤ max(dp(x, y), dp(y, z)):

This follows directly from |a + b|p ≤ max(|a|, |b|), as we have |(x − y) + (y − z)| ≤ max(|x −
y|, |y − z|), and thus |x− z| ≤ max(|x− y|, |y − z|) =⇒ dp(x, z) ≤ max(dp(x, y), dp(y, z)).

As the p-adics exhibit this Strong Triangle Inequality, we call our metric dp a “non-Archimedian”
metric, and | . |p a “non-Archimedian” norm.

Definition 6: A sequence is called Cauchy if for any ϵ > 0, there exists N ∈ N such that
n,m ≥ N → |an − am| < ϵ.

An example of such a sequence is the harmonic series where it’s represented by
∑∞

n=1
1
n

.

Remark 2: If an is a Cauchy sequence, then an is bounded.

7
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Proposition 2.4: Show that Qp is the completion of Q with respect to | . |p.

Proof. To show that Qp is the completion of Q, we must show that all Cauchy sequences of
rationals converge to some value in Qp, and that for all a ∈ Qp, there exists a Cauchy sequence of
rationals which converges to a.

Claim 1: For all a ∈ Qp, there exists a Cauchy sequence of rationals which converges to a.

Fix a ∈ Qp. For some k ∈ Z, we may write the p-adic expansion of a to be:

a = pka
k + pk+1a

k+1 + pk+2a
k+2 + . . . =

∞∑
i=0

pk+iai

.

Define the partial sums Sn =
∑n

i=0 p
k+iai, and note that ∀n ∈ Z≥0, Sn ∈ Q.

Consider the sequence (S0, S1, S2, . . .) in Q. We claim that this sequence is Cauchy, and converges
to a. To see that it is Cauchy, we note that ∀ϵ > 0, ∃N ∈ N such that 0 < 1

pN
< ϵ.

Note that ∀m,n ∈ N such that m ≥ n > N − k, we have:

Sm − Sn =
m∑
i=n

pk+iai =⇒

pk+n|(Sm − Sn) =⇒
pN |(Sm − Sn) =⇒

|Sm − Sn|p ≤
1

pN
< ϵ

It follows that our sequence (S0, S1, S2, . . .) is Cauchy. Moreover, we claim that this sequence
converges to a in Qp. ∀ϵ > 0, ∃N ∈ N such that 0 < 1

pN
< ϵ. ∀n > N − k, note that:

a− Sn =
∞∑
i=n

pk+nan =⇒

pk+n|(a− Sn) =⇒
pN |(a− Sn) =⇒

|a− Sn|p ≤
1

pN
< ϵ

Thus (S0, S1, S2, . . .) is a Cauchy sequence converging to a in Qp.

8
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Claim 2: Every Cauchy sequence of Qp converges to some a in Qp.

Let (x1, x2, x3, . . .) be an arbitrary Cauchy sequence of elements in Qp. We may write each xi as a
p-adic expansion. Let each xi =

∑∞
j=ki

pjaij , for some ki ∈ Z.

We note that for all q ∈ Z, there exists Nq ∈ N such that the pq coefficient of xn for all n > Nq is
the same.

This is because as (x1, x2, x3, . . .) is Cauchy, for all q ∈ Z there exists Nq ∈ N such that for all
m,n > Nq:

|xm − xn|p <
1

pq
=⇒

pq| xm − xn =⇒∑
j≤q

pj(amj − anj) = 0 =⇒

amj = anj,∀j ≤ q

Specifically we obtain amq = anq, as desired. For each q ∈ Z, let bq be the unique coeffi-
cient of pq for which there exists Nq ∈ N such that all xn with n > Nj have a pq coefficient of
bj . Take a ∈ Qp such that the pq coefficient of a is bq. We claim that a is the limit of (x1, x2, x3, . . .).

∀ϵ > 0, ∃M ∈ N such that 0 < 1
pM

< ϵ. Take N ∈ N to be the maximum of Nq, for all q ≤ M .
Note that ∀n > N , xn has pj coefficients of bj for all j ≤ M . It follows that ∀n > N :

pM | (a− xn) =⇒

|a− xn|p ≤
1

pM
< ϵ

Thus (x1, x2, x3, . . .) converges to a ∈ Qp, as desired.

Combining our two claims, it follows that Qp is the completion of Q.

Proposition 2.5: For a ∈ Qp, we may write a as akpk + ak+1p
k+1 + . . ., for some k ∈ Z. Show

that a is rational if and only if the sequence (ai) is eventually periodic.

Proof. We start with the backwards direction. Suppose past some j ∈ Z, (ai) is periodic, repeating
every q terms. Let c =

∑j
i=k aip

i. We have that a = c+aj+1p
j+1+aj+2p

j+2+ . . .+aj+qp
j+q+ . . .,

and thus a = c + pj+1(aj+1p
j+1 + aj+2p

j+2 + . . . + aj+qp
j+q)( 1

1−pq
). As this expression clearly

evaluates to some rational number, it follows that a ∈ Q.

9
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For the forwards direction, consider some a ∈ Q. Let a = b
c
, for b, c ∈ Z such that c ̸= 0,

(b, c) = 1. Take c = pvp(c)c′. It suffices to show that a′ = b
c′

is eventually periodic, as we may
simply divide by pvp(c) (i.e. shift our summation vp(c) places to the left) to obtain the expansion of
a. We may write a′ = d + e, for some d ∈ Z, e ∈ Q such that −1 ≤ e < 0. d has a finite p-adic
expansion, and thus to show that a′ is eventually periodic it suffices to show e is eventually periodic.

If e = −1, this claim is immediate. Otherwise, let e = x
y
, for x ∈ Z, y ∈ N such that (x, y) = 1.

Note that py, as we have extracted all factors of p from the denominator of a in defining a′.

Note that pϕ(y) ≡ 1 mod y =⇒ y|(pϕ(y) − 1). Let q ∈ N be such that yq = pϕ(y) − 1. Then we
have that:

x

y
=

xq

yq
=

xq

pϕ(y) − 1
=

−xq

1− pϕ(y)
= (−xq)(1 + pϕ(y) + p2ϕ(y) + . . .)

.

Note that −1 < x
y
< 0 =⇒ 0 < −xq < yq =⇒ 0 < −xq < pϕ(y) − 1. Thus the p-adic

expansion of −xq has somewhere between 1 and ϕ(y)− 1 digits, and it follows that our expression
for x

y
is periodic every ϕ(y) terms. (It should be noted that, in fact, x

y
will be periodic every n terms,

where n is the least natural number such that pn ≡ 1 mod y.)

Thus e has a periodic p-adic expansion, which we have demonstrated suffices to show that a has a
periodic p-adic expansion, as desired.

3 Power Series in p-adics
Lemma 3: Let (an)n≥0 be a sequence in Qp. Then if |an+1 − an| converges to 0 in Qp, (an)n≥0

is a Cauchy sequence.

Proof. For all ϵ > 0, ∃N such that ∀n > N , |an+1 − an| < ϵ. Then ∀m,n > N we have:

|am − an| = |(am − am−1) + (am−1 − am−2) + . . .+ (an+1 − an)|
≤ max (|am − am−1|, |am−1 − am−2|, . . . , |an+1 − an|) < ϵ

by the Strong Triangle Inequality. Thus (an)n≥0 is Cauchy, as desired.

Note: This is an especially neat property of the p-adic numbers which interestingly does not hold
for the absolute value we define over the reals. Consider the sequence (an)n≥1 in R given by
an = ln(n). We have that:

lim
n→∞

|an+1 − an| = lim
n→∞

|ln
(
n+ 1

n

)
| = ln(1) = 0

.

10
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However, we note that (an)n≥1 is not Cauchy, as for all n ∈ N, |a2n − an| = ln(2), and thus there is
no point past which our terms become arbitrarily close.

Definition 7: Let (an)n≥0 be a sequence in Qp. Define the sequence (Si)i≥0 of partial sums
Si :=

∑
j≤i aj . We say that the series

∑
n≥0 an converges to a ∈ Qp if (Si)i≥0 converges to a in Qp.

Proposition 3.1: Let (an)n≥0 be a sequence in Qp. Show that
∑

n≥0 an converges in Qp if and only
if the sequence (an)n≥0 converges to 0 in Qp.

Proof. We start with the forwards direction. Suppose
∑

n≥0 an converges to a in Qp. By definition,
this implies that the sequence (Si)i≥0 converges to a in Qp. Thus for all ϵ > 0, ∃N such that
∀n > N , |Sn − a| < ϵ. Then we obtain:

|an+1 − 0| = |Sn+1 − Sn| = |(Sn+1 − a)− (Sn − a)| ≤ max (|Sn+1 − a|, |Sn − a|)

Where the last step follows from the Strong Triangle Inequality. Noting that |Sn − a| < ϵ, and
|Sn+1 − a| < ϵ, it follows that |an+1 − 0| < ϵ, and thus (an)n≥0 converges to 0 in Qp.

For the backwards direction, suppose (an)n≥0 converges to 0 in Qp. We demonstrate that (Si)i≥0 is
a Cauchy sequence.

We have that for all ϵ > 0, ∃N such that ∀n > N , |an − 0| < ϵ. Noting that Sn+1 − Sn = an+1, we
have that |Sn+1 − Sn| < ϵ. Thus |Sn+1 − Sn| converges to 0 in Qp. By Lemma 1, it follows that
(Si)i≥0 is Cauchy, and thus converges in Qp by the notion of completion.

Definition 8: We define the radius of convergence of
∑

n≥0 a
nxn to be the value r so that the

sequence |an|pcn converges to 0 for all c < r and does not converge for c > r. The following reuslt
is fundamental.

Proposition 3.2: Show that the radius of convergence r of a power series Σn≥0anx
n, is equal to

(lim sup |an|
1
n )−1

Proof. Claim: Σn≥0anx
n converges if |x| < r

We start by dividing our proof into three cases: r = 0, r = ∞, and r ∈ (0,∞)

Our first case is when r = 0. Our goal is to show that f(x) doesn’t converge for x ̸= 0 in Qp. For
r = 0, we have limn→∞|an|

1
n = ∞, so we know that some sub-sequence of n

√
|an| approaches ∞.

For x ∈ Qp − {0}, we want to prove that f(x) isn’t convergent.

If x ̸= 0, then |x| > 0 ⇒ n
√

|an| > 1
|x| . ⇒ |anxn| > 1 for infinitely many n.

Therefore, since Σn≥0anx
n doesn’t converge because the general sum never approaches zero.

11
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The second case is when R = ∞. Our goal for this case is to show that f(x) converges ∀x ∈ Qp.
(lim sup |an|

1
n )−1 = 0 so |an|

1
n = 0. We know that the convergence f(x), x = 0 (Case 1) is obvious,

so for x ∈ Qp, we have:

|an|
1
n <

1

2|x|
for n ≥ 0 implies |anxn| < 1

2n
for sufficiently large

Therefore, by the convergence of Σ| 1
2n
| in R implies the convergence of Σanxn

The third case is when r ∈ [0,∞]. Our goal is to show that ∀ r in the range [0,R], |an|
1
n converges.

0 < |x| < R ⇒ 0 <
1

r
= (lim sup n→∞|an|

1
n )

We know that there is a value ϵ, 0 < ϵ < 1, such that 1
r
< 1−ϵ

|x| . Therefore, lim sup n→∞|an|
1
n <

1−e
|x| ⇒ |anxn| < (1 − ϵ)n for n sufficiently large. Because Σn≥0(1 − ϵ)n in r converges, by the

comparison test, Σn≥0|anxn| converges in Qp.

Proposition 3.3: Show that the function obtained above f : D(0; r−) → Qp is continuous. Here
D(0; r−) is the open disc of radius r centered at 0. That is, it contains all elements whose absolute
value is less than r.

Proof. We first prove a lemma which states that if f =
∑

n≥0 anx
n converges on a closed disc of

radius r nonzero, then it is uniformly continuous and bounded on such disc. Recall a function
is uniformly continuous on some set A if for every ϵ > 0, there exists a δ > 0 such that for all
x, y ∈ A with |x− y| ≤ δ, we have |f(x)− f(y)| ≤ ϵ.

Suppose f converges at some x0 such that |x0| = r, then by Proposition 3.1, we
have |anxn

0 | = |an|rn → 0 as n → ∞. For x, y in the closed disc, we have
f(x)− f(y) = (x− y)

∑
n≥1 an(x

n−1 + xn−2y + · · ·+ yn−1). Using properties as an ultrametric,
we obtain the bound |

∑
n≥0 an(x

n−1 + xn−2y + · · · + xyn−2 + yn−1)| ≤ maxn≥1 |an|rn−1 = C,
where the existence of maximum is implied by the convergence of |an|rn.

If all coefficients except a0 are zero, then f is constant, and obviously uniformly continuous.
If some an, n ≥ 1 is nonzero, then C > 0. Set δ = ϵ

C
, and for all |x − y| < δ, we have

|f(x)− f(y)| < ϵ
C
C = ϵ, and we are done.

If the series only converges at 0, then continuity is clear. Suppose it converges on an open disc
of radius r, and let x0 be an element in the open disc. Then |x0| = r0 < r, so f converges on the
closed disc of radius r0, so f is uniformly continuous on such closed disc, which implies continuity.
Since r0 < r is arbitrary, this completes the proof.

12
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3.1 The p-adic exponential and logarithm

Definition 9: Let exp(x) be the formal power series, exp(x) =
∑

n≥0
(x)n

n!
in the ring Qp[[x]].

Definition 10: We define a closed disc of radius r and center a to be the set
D(a; r) := z ∈ Qp : |z − a|p ≤ r and an open disc of radius r, centered at a to be the set
D(a; r−) := z ∈ Qp : |z − a|p < r.

Now consider f(x) =
∑∞

n=0 anx
n ∈ Qp[[x]]. Therefore, we can define a function f : D(0; r−) →

Qp so that for any t ∈ D(0; r−) we have...

f(t) =
∞∑
n=0

ant
n

Definition 11: We say that a function is continuous f : S → Qp at a point x ∈ S, if for all ϵ ∈ R+,
there exists some positive δ, where |x− y|p < δ and |f(x)− f(y)|p < ϵ.

Definition 12: We define exp(x) to be the formal power series
∑

i≥0
xi

i!
in the ring Qp[[x]].

Proposition 3.1.1: For a, b ∈ D(0; p
−1
p−1 ) we have that a + b ∈ D(0; p

−1
p−1 ) and furthermore

exp(a+ b) = exp(a) · exp(b).

Proof. So we need to use formal power series to prove this p-adically. We know that
∑l

i=0
(a+b)n

n!
,

so we can use the binomial theorem where we have (a+ b)n, so we
∑

n
∑l

k=0

(
n
k

)
· an−kbk which

is true from the Binomial Theorem, and we know that the binomial coefficients are
(
n
k

)
= n!

(n−k)!k!
.

So the n!’s cancel, and then we get
∑

n≥0

∑l
k=0

an−kbk

k!(n−k)!
, where it’s

∑
n≥1

∑l
k=0

an−k

(n−k)!
· bk

k!
which is

what we desired.

Corollary 1: exp(na) = (exp(a))n for all integers n and a ∈ D(0; p
−1
p−1 ).

Proof. This follows directly from the previous proposition by induction.

Proposition 3.5b: Show that the radius of convergence of exp(x) is p
−1
p−1 .

Lemma 4: vp(n!) is equivalent to n−sp(n)

p−1
where sp(n) is the sum of the digits of n in base p.

Proof. So we can write that vp(n!) =
∑l

i=0⌊
n
pi
⌋. Let n = nlp

l + nl−1p
l−1 + . . . ni+1p+ ni be the

base p representation of n. We know that n
pi

is the same as
∑l

i=1(nlp
l−i + . . . + ni+1p + ni) as

we just apply a factor of p−i to the base p representation. This sum can be turned into a double
summation.∑l

j=1

∑j
i=1 nj(p

j−i) =
∑l

j=1 nj(
pj−1
p−1

). Since 1
p−1

is a constant, we can write our sum as...

13
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1
p−1

∑l
j=1 nj(p

j − 1) which is equivalent to 1
p−1

∑l
j=1 nj(p

j) − 1
p−1

∑l
j=1 nj = n−sp(n)

p−1
where

sp(n) =
∑l

j=1 nj is the sum of the digits of n in base p.

Now we continue by using Proposition 3.2, which states the radius of convergence for a power
series. We want to find that limn→∞ p

vp(n!)

n just plugging in n! into the radius of convergence
formula.

We need to know vp(n!). From Lemma 2, we can say that vp(n!) =
n−sp(n)

p−1
. So, vp(n!) < n

p−1
. So

vp(n!)

n
< 1

p−1
. Thus, p

vp(n!)

n < p
1

p−1 .

Proposition 3.1.2: Show that |exp(a)− exp(b)| = |a− b| for all a, b ∈ D(0; p
−1
p−1 ).

Proof. So we can write |exp(x)− exp(y)| as |
∑∞

n=1
ai

i!
−
∑∞

n=1
bi

i!
|. If we write out all the terms

then we have...

|
∞∑
n=1

(
a

1
+

a2

2!
+

a3

3!
...)−

∞∑
n=1

(
b

1
+

b2

2!
+

b3

3!
...)|

We can group the terms together and we get...

|
∞∑
n=1

(
a− b

1
+

a2 − b2

2!
+

a3 − b3

3!
+ ...)|

We know that an− bn can be factored as (a− b)(an−1+ an−2b+ ...), so we can factor out (a− b) as
the GCD of all the factors. That means the p-adic evaluation of the whole summation is the p-adic
evaluation of the GCD, which in this case is (a− b) so we are done.

Definition 10: We have the formal power series as follows, log(1 − x) = −
∑∞

n=1
xn

n
and

log(1 + x) =
∑∞

n=1(−1)n+1 xn

n

Proposition 3.1.3: The radius of convergence of log(x + 1) is 1. In particular, log defines a
continuous function: 1 + p(Z) to the evaluation of the power series x ∈ 1 + pZ.

Proof. We can use Theorem 1, where we have that limx→∞|an+1

an
| is limx→∞|xn+1

n+1
· n
xn |, and since

the coefficients of n + 1 and n are the same, then we have that the limit is 1. Formally, |x| < 1
because |x| is a constant.

14
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Proposition 3.1.4: log(ab) = log(a) + log(b).

Proof. The partial derivative of log(ab) with respect to a is 1
ab

· b = 1
a
, by chain rule. The RHS

derivative is also 1
a
, thus since the derivatives are equal then the functions differ by some constant.

Thus, we have log(ab) = log(a) + log(b) + C for some constant C. Utilizing Definition 2, we
know that log(ab) = −

∑∞
n=1

(ab−1)n

n
. If we factor out bn, then we get

∑∞
n=1(−1)n+1 b

n(a− 1
b
)n

n
. We

have log(a) + log(b) = log(b) +
∑∞

n=1(−1)n+1 (a−1)n

n
. So we notice that one series is centered at

1 and the other at 1
b
. We treat b as a constant since we considered it so when we took the partial

derivative.

Lemma 5: If two power series on a disc of positive radius in K have the same derivative differ by a
constant on that disc.

Proof. If f(x) =
∑∞

n=1 anx
n and g(x) =

∑∞
n=1 bnx

n and f ′(x) = g′(x) and so fn(x) = gn(x)

which means that fn(x)
n!

= gn(x)
n!

so the only difference between their power series are their constant
terms.

From Lemma 5, the centers on the series don’t matter, and then we can say that log(xy) and
log(x) + log(y) only differ by a constant.

Proposition 3.1.5: exp(a) ∈ D(0; p
−1
p−1 ) and that exp(x) and log(x) are mutually inverse

isomorphisms of groups between the group D(0; p
−1
p−1 ) under addition and the multiplicative group

D(1; p
−1
p−1 ).

This means that we want to show exp(log(1 + x)) = 1 + x and log(exp(x)) = x. We see that
d
dx
(elog(1+x) = 1

1+x
· elog(1+x. Generally, we see that (1 + x) · d

dx
(f(x)) = f(x). Let’s make a

function f(x) =
∑∞

n=1 anx
n. We can write...

(1 + x) ·
∞∑
n=1

an · nxn−1 =
∞∑
n=1

an · xn

On the LHS, we have a1 + (a1 + a2)x + (2a2 + 3a3)x
2 + .... On the RHS, we have that

a0 + a1x+ (a2)
2x2... Equating coefficients we get that...

a0 = a1

a1 + 2a2 = a1

2a2 + 3a3 = (a2)
2

...

15
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This means, a2 = a3 = a4 = .... = 0. Only the constant terms are equal, which is what we want.
This implies that any expression satisfying f(x) is a constant multiple (1 + x).

Now, we prove the other way, that log(exp(a)) = a. The proof is analogous.

4 The Artin Hasse Exponential

Definition 11: We define the Artin-Hasse exponential E(x) = exp
(∑

n≥0
xpn

pn

)
=

exp
(
x+ xp

p
+ xp2

p2
+ . . .

)
4.1 Integrality of E(x)

The goal is to prove that E(x) ∈ Zp[[x]] or that the coefficients of the Artin Hasse Exponential are
contained in Zp. Although, we need an essential lemma, and we will show a novel proof (not found
in papers) for it using induction.

Dwork’s Lemma: Let f(x) ∈ 1 + xQp[[x]] be a power series with p-adic rational coefficients.
Then f(x) ∈ 1 + xZp[[x]] ⇐⇒ f(xp)

f(x)p
∈ 1 + pxZp[[x]].

Proof. For the forward direction, note that due to the multinomial theorem we have that for
f(x) ∈ 1 + xZp[[x]], f(x)p ≡ f(xp) mod p. As f(xp) has a constant coefficient of 1, we note that
f(xp) is invertible, and thus it follows that f(xp)

f(x)p
∈ 1 + pxZp[[x]], as we note that the quotient of

these power series is 1 mod p, and has constant term 1.

For the other direction, we proceed by induction. Suppose for some f(x) ∈ 1 + xQp[[x]], we have
that f(xp)

f(x)p
∈ 1+xZp[[x]], and thus there exists g(x) ∈ 1+pxZp[[x]] such that f(xp) = f(x)p ·g(x).

For the base case of our induction, we note that the constant term of our polynomial must be 1 by
the assumption that f(x) ∈ 1 + xQp[[x]]. Note that 1 ∈ Zp.

For the inductive step, suppose for some N > 1, we have that for all n ∈ N such that n < N , the
xn coefficient of f(x) is in Zp.

Firstly, we claim that the N th coefficient of f(x)p · g(x) is congruent to the N th coefficient of
(
∑

n≤N anx
n)p in Zp. We note that as f(x) has no coefficients of negative x powers, we can truncate

f(x) up to the N th term when we are considering just the coefficient of xN . So the N th coefficient
of f(x)p · g(x) is congruent to that of (

∑
n≤N anx

n)p · g(x). As g(x) ∈ 1 + pxZp[[x]], it fol-
lows that the N th coefficient of f(x)p ·g(x) is congruent to that of (

∑
n≤N anx

n)p in Zp, as desired.

Now we show that aN is in Zp, considering two cases:
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Case 1: pN

Recall f(xp) = f(x)p · g(x). Note that if pN , the coefficient of xN on the LHS is 0. Thus we
have that 0 is equivalent to the xN coefficient of (

∑
n≤N anx

n)p in Zp. To form a term of xN from
(
∑

n≤N anx
n)p, we can combine the aNx

N term in (
∑

n≤N anx
n) with p− 1 other constant terms

a0 = 1, in p ways.

All other ways to combine terms of (
∑

n≤N anx
n)p to yield an xN coefficient do not involve a term

of aNxN , and by our inductive hypothesis are comprised only of a product of coefficients in Zp. By
the multinomial theorem, each of these terms occurs with a coefficient divisible by p, and thus we
may equate coefficients on the left and right hand sides to write that 0 = paN + c in Zp, for some
c ∈ pZp. Thus it must be that aN ∈ Zp, completing our inductive hypothesis in this case.

Case 2: p|N

Once again, consider f(xp) = f(x)p · g(x). Note that the xN coefficient on the LHS is aN
p

. On the

right hand side, the xN coefficient is equivalent to that of (
∑

n≤N anx
n)p in Zp. We note that we

can form an xN term by combining n terms of aN
p
x

N
p .

We can also form such a term by taking the aNx
N term in (

∑
n≤N anx

n) with p− 1 other constant
terms a0 = 1, in p ways. By our inductive hypothesis, we note that all other terms of xN are
comprised only of a product of coefficients in Zp. By the multinomial theorem, each of these
terms occurs with a coefficient divisible by p. Equating coefficients on the left and right, we have
aN

p
= apN

p

+ paN + c in Zp, for some c ∈ pZp.

By our inductive hypothesis we have that aN
p
∈ Zp, and thus apN

p

= aN
p

in Zp by Fermat’s Little

Theorem in Zp. So we have that aN
p
= aN

p
+ paN + c in Zp, and thus 0 = paN + c in Zp, which

implies aN ∈ Zp, as c ∈ pZp. This completes our inductive hypothesis in this case.

Combining cases 1 and 2, we have completed our inductive step, and thus we have that for all n ∈ N,
an ∈ Zp. As a0 = 1, it follows that f(x) ∈ 1 + xZp[[x]], completing our backwards direction.

Proposition 4.1: exp(−px) ∈ 1 + pxZp[[x]]

Proof. We have that exp(−px) =
∑

n≥0
(−px)n

n!
= 1 +

∑
n≥1

(−px)n

n!
.

For n ≥ 1, recall that vp(n!) =
(

n−sp(n)

p−1

)
, where sp(n) is the sum of the digits of n in base p.

Thus, vp(
(−p)n)

n!
) = n −

(
n−sp(n)

p−1

)
> n −

(
n

p−1

)
= n(p−2)

(p−1)
≥ 0, and so vp(

(−p)n)
n!

) ≥ 1, from
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which we obtain
∑

n≥1
(−px)n

n!
∈ pxZp[[x]]. Thus

∑
n≥0

(−px)n

n!
∈ 1 + pxZp[[x]] =⇒ exp(−px) ∈

1 + pxZp[[x]]

Proposition 4.2: E(xp)
E(x)p

= exp(−px).

Proof.

E(x)p =

(
exp

(∑
n≥0

xpn

pn

))p

= exp

(
p
∑
n≥0

xpn

pn

)
= exp

(
px+ p

∑
n≥1

xpn

pn

)
=

exp(px) · exp

(∑
n≥1

xpn

p(n−1)

)

= exp(px) · exp

(∑
n≥0

xp(n+1)

pn

)
= exp(px) · exp

(∑
n≥0

(xp)p
n

pn

)
= exp(px) · E(xp)

.

It follows that E(xp)
E(x)p

= 1
exp(px) = exp(−px), as desired.

Corollary: E(x) ∈ Zp[[x]]

As we have shown that exp(−px) ∈ 1 + pxZp[x], it follows that:

E(xp)

E(x)p
= exp(−px) =⇒ E(xp)

E(x)p
∈ 1 + pxZp[[x]]

. By Dwork’s Lemma we have that E(x) ∈ 1 + xZp[[x]], and thus E(x) ∈ Zp[[x]].

4.2 Radius of Convergence

Proposition 4.3: The radius of convergence of E(x) is 1.

Lemma 6: We can write ex =
∏

n≥1(1− xn)
µ(n)
n where µ(n) is the mobius function.

Proof. Let’s write...

log
∞∏
n=1

(1− xn)
−µ(n)

n =
∞∑
n=1

−µ(n)

n
log(1− xn) =

∞∑
n=1

µ(n)

n

∞∑
k=1

log(1− xk) =

∞∑
n=1

µ(n)

n

∞∑
k=1

xnk

k
=

∞∑
m=1

xm

∞∑
n=0

µ(n)

m
=

∞∑
m=1

xm

m

∑
d|m

µ(d)
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.

The reason the bounds are from 1 onwards, is because we have 1
n

in some of our expressions which
means that it would be undefined if we included 0. We know that

∑
d|m µ(d) = 1 and so the final

sum is equivalent to −log(1− x).

So we can write the below from Lemma 6.

ex =
∏
n≥0

(1− xn)
−µ(n)

n

Ep(x) =
∏

n≥0,p∤n

(1− xn)
−µ(n)

n

The above is the representation as a formal power series. The transition from ex to E(x) is a
traditional operation in p-adic analysis. The radius of convergence of the above series is 1 from the
definition of a radius of convergence.

Remark 2: This is a stronger radius than p−
1

p−1 , the general radius of convergence for exp(x)
demonstrated in Proposition 3.5.

5 Further Research
Using all this groundwork and the various proofs that were discussed in the paper, we can look into
E(

√
p) or if E(

√
p

a
b ) converges, which would lead into finding whether E(

√
p) or even just E(p)

is rational or irrational. For finding whether E(
√
p) converges or not, a new definition of the p-adic

norm would have to be adapted because the regular definition is not sufficent for fractional exponents
that are less than 1. Overall, this is a very interesting topic that demands more experiementation.
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