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ABSTRACT

Christiaan Huygens, in the 1600s, discovered the innate synchronization of coupled pendulums.
This paper furthers Huygens’s unanswered ambitions by considering the effects of the speed of
synchronization based on changes in string length in a coupled pendulum system, designed on a
moving platform. Two simple pendulums were connected through the medium of a wooden board
which was then placed on cylindrical cans. It’s found that string length and synchronization time
seemed to display an inverse relationship based on trends of raw data. The findings presented show
that synchronization can be optimized which is useful in various fields of study like the medical field
where many diseases are caused by the synchronization of neurons. Explanations for other behaviors
such as brief stops in motion and anti-phase versus in-phase synchronization are explained using
laws of Classical Mechanics and are modeled with polynomial regressions. And the general effect
of synchronization arises from the medium between the pendulums and the various dampenings of
the system. Finally, the equations of motion and energy are modeled with Lagrangian physics and
Mathematica software. Possible extensions, like creating a model similar to the Kuramoto Model,
and other applications of the problem are discussed.
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1 Introduction
Synchrony is everywhere in our world. A notable example includes how the circadian rhythm
in the body is a group of cells that act as a chronometer to keep the human body in synchrony
with the world. There is also the less known synchrony of social phenomena, where one might
synchronize the motion of their hands or feet with someone when talking to them in a conversation.
In more practical spaces, the vibrations from synchronizing pendulums can be harvested for natural
energy [1]. Synchrony in the natural world is not a new topic. But is there a way to optimize this
synchronization? That’s what this paper aims to find out.

Christiaan Huygens, in the 17th century, discovered that two pendulums can synchronize their
motion by setting up the two pendulum apparatuses connected by a wooden beam and releasing the
pendulum bobs at different times. The pendulums moved with the exact same speed in opposite
directions, mirroring their motion along the y-axis. However, the pendulums need some sort of
medium connecting them, otherwise, there is no method of transferring energy which is the method
by which they synchronize. That method is also known as the escapement mechanism [2]. If
the pendulums synchronized without a medium, then it’s either after an elongated period or pure
coincidence.

Figure 1: The schematic above shows what Huygens’s pendulums would have looked like when he experimented, where
M is the total mass of the system, l is the string length, and m is the mass of the bobs [3].

Above in Figure 1, we can see what Huygens’s pendulums would have looked like. But unlike the
simplified diagram, they were highly mechanical. Unlike the “classical” pendulums we consider in
modern times consisting of a string and a bob. The diagram is representative of the rest of his setup.
His work involved a wooden beam and the pendulums hanging down from them, but this paper
utilized a different approach. The pendulums are built into wooden towers and those towers are
placed on a similar wooden board placed on cylindrical cans. This poses no problem as the interest
is in the trend in average synchronization times and not the actual numbers from the data (which
can change based on the setup utilized in the experiment). With the board below the pendulums,
there is more mobility which means that the system will synchronize in a faster time. This is useful
for data collection in this experiment since many trials wanted to be performed in little time.

At first, Huygens thought it was air currents causing the pendulums to synchronize [4]. Testing
that theory, he found that it didn’t work and he died too soon to explore the phenomena any longer.
However many questions remain unanswered more than 350 years after Huygens’s discovery. What,
for example, are the requirements for self-synchronization? Or, what even causes synchronization
and how can it be applied? This paper delves deeper into the topic of synchrony to answer Hyugens’s
ambitions. The pendulums in this paper were arranged in close proximity, and the string length of
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both pendulums was changed such that both had approximately the same period at all times and the
average synchronization times were found, eventually generalizing into a relationship.

In previous research it was shown that there is a transition period for damping coefficient ρ in [0.06,
0.07] there is quasi-periodic motion for in-phase motion [5]. Simply meaning, there is some relation
between the material of the medium used and the average synchronization time. We define in-phase
motion as the pendulums performing the same motions (same period, speed, amplitude, etc.) in
the same directions. It follows that anti-phase motion are the pendulums performing the same
motions but in opposite directions. Huygens’s results indicate he used a wood that fell outside the
range stated above since he achieved only anti-phase synchronization after hundreds of swings
with his pendulums [2]. So in this experiment, wood that has a high enough density to fall within
outside that range was utilized. For experimental purposes, Pantaleone created a platform with two
metronomes with a phase difference close to 0 [6]. And increasing the damping of the moving
platform reported anti-phase motion which is supported by the Kuramoto model.

2 Materials
Below are the materials obtained and utilized for this experiment. Twenty 0.31 cm (1

8
in) x 0.31

cm (1
8

in) x 91 cm (36 in), ten 0.31 cm (1
8

in) x 0.15 cm (1
4

in) x 91 cm (36 in) balsa wood sticks
(Pitsco Education), 2 Iron Pendulum Bobs (Eisco), 1 Roll of Kite String (HappyToy), 1 Gorilla Glue
(Gorilla), 1 Air Dried Poplar Board (Woodcraft, Truevalue), 2 Wooden Shims (Nelson Wood Shims),
4 Mini Metal Staple Hooks (Gardner Bender), 3 Empty Soda Cans (Seagram). Other household
items include a hammer, masking tape, pencils, and sandpaper were used during the building. For
Data Collection, all that was utilized was a stopwatch. And for Analysis, Mathematica and Wolfram
software was utilized.

3 Methods

3.1 Building

The schematic shown in Fig. 2 below has the necessary measurements for the frame of a single
pendulum tower. Two frames were made and connected with 4 balsa wood sticks to create the full
pendulum tower. This process was duplicated to create another pendulum tower. Fig. 2 shows an
11.43 cm (4.5 in) x 45.72 cm (18 in) rectangle that has rigid cross supports. The diagonal supports
of the two separate towers were pointed in opposite directions as shown above. This was to make
sure the structure was sound. The measurements of the wider sticks are 0.31 cm (1

8
in) x 0.15 cm (1

4
in), with any length needed. Having thicker sides lets the structure stand sturdy without much sway.
It also prevents the need to create a triangular-shaped tower which is much harder to operate.
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Figure 2: The blue lines designate thick balsa wood sticks, black lines designate the thin balsa wood sticks, green lines
designate the string, red lines indicate staple hooks, and the thin rectangles are small wooden shims a) A simplified
(doesn’t have cross supports) cartoon 3D depiction of the dimensions of the tower (with measurements), including what
the sides look like b) The front side of the tower which contains the wooden bar c) The back frame of the tower, the
diagonal supports are in the opposite direction of the front frame d) The depiction of how the pendulum bob hangs on
the metal hooks (The bob is hooked onto the string).

When gluing the horizontal and diagonal supports, lap joints were avoided as those would reduce
the glued surface and bonds. Instead, the edges of the diagonal supports were cut to fit in between
the horizontal and vertical supports. When the two rectangular frames were created, they were
connected using a singular balsa stick on each side. At the end, the pendulum had the shape of a
rectangular prism with dimensions 11.43 cm (4.5 in) x 11.43 cm (4.5 in) x 45.72 cm (18 in). This
process was duplicated for a second tower.

Then the mechanism for changing the string length was made. First, a thin wooden bar, made of
poplar wood with a width of 3.81 cm (1.5 in) and length of 16.51 cm (6.5 in) was placed at the top
of the tower. Two metal staple hooks were hammered into the ends of the wooden bar. Then a long
piece of kite string was knotted onto one of the staples and the other end of the string was let loose.
That loose end was taped onto the top of the bar, and when adjusting the string was needed, the tape
could be undone and the string just needed to be pulled up to shorten the string length. Then the
wooden bar was secured onto the top of the tower. Duplicate this process for the second tower. Like
in Fig. 3, they were then placed onto a sturdy wooden board. The board rested on three congruent
cylindrical cans and two weights were added onto the towers to prevent additional swaying. The
cans used were 5.08 cm (2 in) in radius and hollow inside. Using just two cans might damage the
cans (from all the weight), thus affecting the results, which is why this experiment utilizes three.
Markings for where the cans were be placed so the placement of the cans for each trial is relatively
constant. The idea of a moving wooden board was put forward by Kortweg in 1906 [9].

3.2 Procedure

The process began by first pulling one of the pendulums at a certain angle, and then releasing it,
letting the pendulums swing on their own until they synchronized as shown in Fig. 3. For clarity,
only one pendulum is released and it moves the other pendulum through force. It’s known that
when the amplitude of the pendulum becomes too large, then the motion of the pendulum becomes
uncontrolled. Thus, the standard angle to pull the pendulum was 30 degrees which was marked on
the tower itself and was measured with a standard protractor. The poplar board shifted back and
forth under the influence of the forces from the heavy pendulum bobs. The board was watched until
it came to a complete halt: it was at this point that the timer was stopped. The time on the timer was
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recorded along with any other observations seen in the pendulum’s behavior. This was repeated for
28 trials for each string length. The string lengths ranged from 22.9 cm (9 in) to 36.8 cm (14.5 in)
with 1.27 cm (0.5 in) increments which gave 12 string lengths in total. Other behaviors observed
include times when one of the pendulums stops and the general nature of the system before and after
synchronization. Although, many trials were scrapped for a multitude of reasons. The aluminum
cans are very delicate and the setup above the poplar board is quite heavy. The pendulum towers
rolled off and the poplar board would have never stopped in some trials. Any trials of that nature
were redone. If the poplar board never stopped its motion, then that meant the string lengths of the
pendulums were not the same and needed readjustment.

Figure 3: A cartoon depiction of the setup in full (side view, not drawn to scale) and in the starting position. One
pendulum is pulled back 30 degrees. The green represents the hollow aluminum cans, red is the iron bobs, yellow is
the metal weights to hold down the towers, blue is the wooden plank at the top of each tower which holds the string
mechanism, and gray is the poplar board. M and m represent the non-negligible mass of the poplar board + towers and
iron pendulum bobs respectively. The arrows at the bottom of the cans represent the friction force.

3.3 Analysis

Once all the trials were collected, for each string length, the trials for each respective string length
were all averaged into one number such that there are a total of 12 averages. For the main graph, the
average synchronization times (dependent) were on the y-axis while the string length (independent)
of the pendulum at a given time was on the x-axis. The ranges of the average synchronization times
for each string length were also found after all the trials were recorded. This was to see the standard
deviation of the synchronization times which is caused by human error or the other limitations listed
later in the paper. Other general observations regarding the nature of synchronization were modeled
with Lagrangian Physics. Once the Euler-Lagrange equation was found, Mathematica software was
used to analyze the equation of motions. The code is listed in the Discussion.

4 Results

4.1 Qualitative Results

While the pendulums were synchronized, they stayed synchronized for the rest of the motion until
the platform ceased movement. The amplitude of the pendulums would gradually decrease while
they were moving in their synchronized motion until both pendulums came to a full stop. Something
of note is that as with Huygens pendulums, the system proceeded to swing only in anti-phase.
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Recalling our definition, this is when the pendulums would move in synchrony with the exact same
amplitude and period, but just in opposite directions. The pendulums would never switch between
anti-phase or in-phase but just stay anti-phase which was peculiar. When the pendulums were fully
synchronized, the platform on which they rested also ceased movement. The procedure for each
trial included starting the pendulum with the same amplitude (30 degrees from the vertical), pulling
only one of the pendulums out, and releasing it. The pendulum that was first released seemed to
stop for a brief moment and then transferred all its former energy to the other pendulum which
caused this other pendulum to swing chaotically at full speed. Slowly, the first pendulum would
regain its energy and after some time the second pendulum would also experience a brief stop. It
was shortly after both pendulums experienced brief stops that the pendulums would synchronize.

4.2 Quantitative Results

Figure 4: Above are synchronization times (recorded in seconds) each under the column with the associated string
length in cm. The measurements (28 trials for each string length) are not necessarily in order of when they were
measured. The pink bar represents the average synchronization time for each string length. In general, the relationship
seen is decreasing for this first interval of string lengths.

6



TEMPORAL ANALYSIS OF SYNCHRONIZING PENDULUMS BASED ON VARYING STRING

LENGTHS - A PREPRINT

Figure 5: This is a continuation of the data from before; and is for string lengths 30.4 cm (12 in) to 36.8 cm (14.5 in).
The measurements (28 trials for each string length) are not necessarily in order of when they were measured. The times
are measured in seconds, and the pink is the average of all the trials in that column. In general, the relationship seen is
decreasing for this interval of string lengths.

The main variable that we were looking at was the effect of string length on the time of synchroniza-
tion. To recall, each of the string lengths trials were averaged and we ended up with 12 numbers. It
was found that string length and average synchronization time has an inverse relationship as shown
in Tables 1 & 2. As the string length increases, the average synchronization time tends to decrease.
The ranges of each string length were also collected and we list them out here according to their
letter: A - [32.73], B - [26.73], C - [24.04], D - [31.22], E - [26.98], F - [33.6], G - [18.47], H -
[17.7], I - [16.36], J - [21.3], K - [23.27], L - [12.61]. For the longer string lengths, the ranges are
higher than that of the shorter string lengths. In the qualitative observations, the phenomena of
brief stops were described and it was also collected numerically. The times at which the brief stops
would occur were recorded, but these had much fewer trials since they seemed to have less variance
than the average synchronization time. They were also only timed for the first half of the string
lengths (A - F) since it was meant as a smaller investigation as part of the larger project.
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Figure 6: This is the string length (cm) vs. average synchronization times (s) graph taken directly from the data table(s)
shown above. The graph includes a polynomial regression as demonstrated by the equation and line of best fit which
has a R2 value of 0.926 which indicates the correlation is very strong. The error bars present on the graph seem to
get smaller as the string length increases in length. Overall, the graph represents an inverse polynomial decreasing
relationship between the two variables.

Figure 7: This is the table of brief stop times (recorded in seconds) for the pendulums. The yellow section is for the first
pendulum and the green is for the second pendulum whereas the average of the brief stops is recorded in pink. Only the
first 5 string lengths were used and 6 trials each making a total of 72 trials for the first and second pendulums together.
It’s observed that the average brief stopping times for each pendulum are all very similar to each other, indicating the
relationship is shallow.

5 Discussion

We recall Newton’s First Law which states that every object will remain at rest or in uniform motion
unless acted upon by an external force [9]. By definition, when coupled pendulums synchronize in
anti-phase motion, they have the exact same motion and speed but just in exactly opposite directions.
This means that whatever driving forces are exerted on the board from the pendulums are exactly
canceled out by each other because they are swinging opposite to each other when in anti-phase
synchronization. Thus, if all the forces on the board cancel out, it won’t continue to move once it
stops. Hence, the pendulums stay in anti-phase motion because there is no external force on the
system. That does lead to the thought of why the pendulums are only performing anti-phase motion
and not in-phase or perhaps oscillating between the two. It doesn’t oscillate between the two states
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of motion because of the reasoning above. To elucidate, the particular type of wood purchased for
this experiment was air-dried poplar wood with a certain damping coefficient. Previous research has
pointed out that if the wood has a certain damping coefficient in the interval, then it would perform
anti-phase motion which the poplar wood seems to fall under according to our experiments [5]. This
indicates that the wood that Huygens used and the wood in this experiment fell under that interval.
Also note the fact that during the synchronization process, the pendulum that is released first in the
setup stops its motion for a brief moment and continues swinging. At the same time, the pendulum
that was not released begins to move at full energy. This is due to the complete energy transfer from
the first pendulum to the second pendulum through the media of the poplar board. After the energy
transfer, the second pendulum soon transfers its energy back to the first pendulum. It’s a curious
result that only after both pendulums have transferred energy, not long after, the synchronization
of the two pendulums occurs. It would be interesting to see how this would change with more
pendulums: would it have to have n (natural number) brief stops for a system of n pendulums? We
notice that if the pendulums were simply on the floor, then the brief stops would not happen or be
spaced quite far apart as opposed to the data above.

The quantitative results also show that the string length and the average synchronization times are
in an inverse linear relationship which is a curious result. An intuitive explanation follows from the
basic fact: the period of a pendulum becomes shorter with a shorter string length and longer with a
longer string length as inferred from the equation T = 2π

√
l
g
, where l is string length and g is the

gravitational constant [10]. With a shorter period, this means that the pendulum would oscillate
more chaotically as opposed to a longer period where the oscillations are more controlled. Thus, if
the pendulums’s motions are slower and more controlled, it’ll be easier to find a point at which their
equations of motions intersect than if the motions are fast and chaotic. It’s reasoned that the density
of the media that the pendulums are attached to also matters. An intuitive explanation is that when
the board, as in the setup of this paper, is heavier that means there is more weight for the force of
the pendulums to pull. The pendulum’s period would be slower and more controlled because there
is a force stopping it from swinging freely. Thus, it would synchronize in less time. One could add
small weights (ex. hex nuts) to the poplar board and increment the weight to properly examine.
Speaking of the inverse relationship, the line of best fit for the graph of the data shows an exponential
relationship demonstrating a shallow curve. This might entail the relationship being a shallow curve
for all string lengths. Or rather, if we are given a larger set of string lengths, then the relationship
may be a steep curve evening into a more shallow one. This indicates that the model might be a
good fit for quasi-periodic motion, but to test that requires very large pendulums of great cost. In
fact, we notice that the polynomial and linear approximations give the same R2 value, but this is
due to the fact we modeled a smaller subset of string lengths. The polynomial representation is
picked because it would be more accurate for quasi-periodic motion. More statistically, it’s noticed
that the ranges of the average synchronization times also get more constricted as they go on in the
list. It’s also noticed that the error decreases as the string length increases, which demonstrates the
same inverse relationship that the main finding has. As the string length gets longer, the motion is
more controlled so the synchronization times would tend to happen quicker and in a smaller range.

For reference, the motion of the pendulums can be modeled with Lagrangian mechanics. This
is more approachable in this case as opposed to Newtonian mechanics because we don’t have to
consider the forces of the constraints. We have to consider the Kinetic and Potential energy for
the equation L = T - V. We will have to use T = 1

2
Mx2 where M is the mass of the poplar board

and x is the position vector following, x =< r + cosθ, sinθ > When combining all the factors and
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taking into account all the different parts in the tower, we obtain Equation 1. The variables are as
follows: m is the mass of the pendulum bob, M is the mass of the system, θ1 and θ2 are the angle
displacements of the pendulums, l is the string length, and k is the "spring constant."

L =
1

2
(M + 2m)(ẋ2) +mẋl(θ1cos(θ1)

+θ2cos(θ2)) + ml2(θ21 + θ22)

+mgl(cos(θ1) + cos(θ2))−
1

2
kx2

Figure 8: Above is a graph of the Euler Lagrange Equations modeled using the Mathematica software. Damping is
accounted for through a constant in the form of bx in the Mathematica code which can be found in the Appendix. The
Euler-Lagrange equations are the solutions to the general equation of motion of the system given above. The damping
constant makes it so that the equations approach each other, as shown in the graph. As they approach each other, it
looks as if they are going into anti-phase motion, which explains why our pendulums appeared to only be going in
anti-phase as opposed to in-phase.

The code to generate the above graph is given below.

The equation above doubly serves as the motivation for testing on the string length in the first
place, as the equation of motion includes the string length, l. Overall, much testing can be done on
the equation of motion. Intuitively, the phase difference between the pendulums should drift in a
periodic way, in an ideal situation, with the absence of any dissipative effects. That is what you
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get when you plug in the Euler - Lagrange equations into Mathematica. They seem to demonstrate
periodic behavior, but there is no synchronization that way. Recall that damping is a term that is
demonstrated as proportional to velocity.

Such a term can be added to either of the Lagrange equations, and it will change the graphs such
that they synchronize as shown above in the graph. In the graph, the equations tend towards each
other and the curves get increasingly similar. We also notice that the equations are intertwining in an
anti-phase pattern. Intuitively, this makes sense since when adding a damping term to the equation,
the scope of the y values is smaller, thus an intersection between the graphs would happen. It’s
known that wetting the surface that the pendulums are rolling on also changes the synchronization
of the pendulums since damping is increased [11]. It’s a known fact that adding more damping can
cause synchronization, but looking at the equations of motion is an obscure way to demonstrate this
fact.

Recent applications of synchronizing pendulums have risen in the medical and engineering pro-
fessions. In a recent study, it was shown that neurons synchronize their beats like the pendulums
in Huygens experiments. Neurons synchronizing their beats are seen in quasi-rhythmic activities
where brain waves are generated. For example, in the hippocampus (responsible for memory),
brain waves undergo theta synchronization which ensures the encoding of episodic memories [12].
Certain diseases mess with the synchronization of these neurons affecting the memory [12]. For
example, it is speculated that epilepsy occurs because of the synchronization of neurons that take
place in the brain. As shown above, since longer pendulums synchronize faster, how would the
prolongation of an electrical impulse from a neuron nucleus (or soma) to the axon affect the neu-
ron(s) sychronization? Of course, the connection between these two fields would need further study,
but it’s an interesting idea to think about. The results in this experiment show that synchronization
can be optimized which is useful for certain inventions that rely on modifying certain properties of
synchronization.

This problem has many extensions since pendulums are so adaptable and have a multitude of
features. For example, how is synchronization changed by the pendulum bob weight or by the
mobility of the medium? Although like with every question, there may come some limitations. For
example, with the pendulum bob weight, the towers would need to be made of a thicker wood for
it to hold a large weight of metal. For adjusting the mobility of the board, the board would need
to be extremely long to get a good sample size. Many trials would have to be done as well since
the cans were hard to work with even just three of them. Pendulums serve as better synchronizers
for experiments than metronomes because pendulums have many factors and are not self-driven.
Expanding on the explanation above, an interesting expansion would be seeing how synchronization
is affected by the distance between two pendulums. Does distance have a factor in synchronization?
One question that is best left untouched would be trying to adjust the string length so that the
pendulum string lengths differ at all times. For example, you could see how a difference of 1 in,
2 in, 3 in, etc. between the string lengths of the pendulums changes the synchronization time of
the pendulums. The problem is that the pendulums wouldn’t be able to synchronize with different
string lengths because the periods would be different. For the two pendulums to synchronize, they
need to move in the exact same motion with the exact same speed. They can only have the same
speed if they have the same period. Thus, the poplar board would never cease movement. Despite
that, there are many avenues for exploration with synchronizing pendulums. Particularly, if the
goal is to find a model for simple pendulums like the Kuramoto model for chaotic oscillators, then
experimenting with a different amount of pendulum is vital. Generalizing the investigations to N
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pendulums is crucial. Overall, finding more factors can assist in creating a mathematical model for
oscillators with a non-intrinsic frequency.

6 Limitations

The towers were built with thick balsa wood and many connecting pieces to reduce the amount of
internal friction and unnecessary swaying of the towers. Since the towers were man-made, they
were not completely free of human error in the building process which may have caused small
shifts in the board. This could have either hastened or slowed the synchronization times of the trials.
In some trials, the board would never fully stop and keep on moving even after the pendulums
synchronized, but those trials were disregarded so they never posed a problem. The surface on which
the pendulums were placed was smooth to ensure the negligibility of friction. Since the timing
was also done by a human, there is human error, but the timing and the releasing of the pendulum
were done by the same person to reduce uncertainty. One of the bigger sources of error would deal
with the cans placed under the wooden board that held the pendulums. The cans were made of thin
aluminum and the rolling could have easily created a dent or two in them while experimenting. The
dents would have caused the board to roll less efficiently and not accurately, possibly affecting the
synchronization time. This was somewhat mitigated by checking the cans and a trial was scrapped
if the cans were deemed dented. In this experiment, the trials are not based on human surveys or
human subjects so there is no apparent bias. Overall, much of the possible error was mitigated to
ensure the accuracy of the experiment.

7 Conclusion

It was found that the string length of a coupled pendulum system has an inverse linear relationship
with the average synchronization time of pendulums. Other results like the fact damping indeed
causes synchronization are confirmed through analysis in Mathematica. Other smaller results with
the nature of the synchronization of the system are also discussed and all are analyzed using laws of
classical mechanics. As the string length of the pendulums gets longer, the time for the pendulums
to synchronize is shorter. A pendulum is an oscillator, meaning it has a specific period, but its
non-intrinsic frequency makes pendulums an interesting subject. Since they don’t have their own
frequency, it makes it easier to apply the results of this paper and similar investigations to other
real-world phenomena that have synchronization. For example, in the medical field, synchronization
of pendulums can help understand how diseases work. In fact, many of them, like epilepsy, are
based on the synchronization of neurons which triggers intense reactions. Pendulums also have
more properties which make it easier to change the average synchronization time and add more to
the model that this paper works towards. In general, the idea of properties affecting synchronization
means that synchronization can be optimized, which is the essence and main idea of the research
presented in this paper. There is so much that goes on even with just the string length of a pendulum
and synchronization in general, as this paper presents. The research presented is pure physics, thus
it serves as a gateway for even more exploration regarding this topic and highlights the need for
further research in this area.
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